Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(4): e0093522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35913158

RESUMO

Cellulose being the most abundant polysaccharide on earth, beta-glucosidases hydrolyzing cello-oligosaccharides are key enzymes to fuel glycolysis in microorganisms developing on plant material. In Streptomyces scabiei, the causative agent of common scab in root and tuber crops, a genetic compensation phenomenon safeguards the loss of the gene encoding the cello-oligosaccharide hydrolase BglC by awakening the expression of alternative beta-glucosidases. Here, we revealed that the BglC compensating enzyme BcpE2 was the GH3-family beta-glucosidase that displayed the highest reported substrate promiscuity and was able to release the glucose moiety of all tested types of plant-derived heterosides (aryl ß-glucosides, monolignol glucosides, cyanogenic glucosides, anthocyanosides, and coumarin heterosides). BcpE2 structure analysis highlighted a large cavity in the PA14 domain that covered the active site, and the high flexibility of this domain would allow proper adjustment of this cavity for disparate heterosides. The exceptional substrate promiscuity of BcpE2 provides microorganisms a versatile tool for scavenging glucose from plant-derived nutrients that widely vary in size and structure. Importantly, scopolin was the only substrate commonly hydrolyzed by both BglC and BcpE2, thereby generating the potent virulence inhibitor scopoletin. Next to fueling glycolysis, both enzymes would also fine-tune the strength of virulence. IMPORTANCE Plant decaying biomass is the most abundant provider of carbon sources for soil-dwelling microorganisms. To optimally evolve in such environmental niches, microorganisms possess an arsenal of hydrolytic enzymatic complexes to feed on the various types of polysaccharides, oligosaccharides, and monosaccharides. In this work, structural, enzymatic, and expression studies revealed the existence of a "swiss-army knife" enzyme, BcpE2, that was able to retrieve the glucose moiety of a multitude of plant-derived substrates that vary in size, structure, and origin. This enzyme would provide the microorganisms with a tool that would allow them to find nutrients from any type of plant-derived material.


Assuntos
Glucose , beta-Glucosidase , Glucose/metabolismo , Glucosídeos/metabolismo , Hidrólise , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
2.
Biophys Chem ; 271: 106563, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640796

RESUMO

The accumulation in vital organs of amyloid fibrils made of mutational variants of lysozyme (HuL) is associated with a human systemic amyloid disease. The detailed comparison of the in vitro properties of the I56T and D67H amyloidogenic variants to those of the T70N non-amyloidogenic variant and the wild-type (WT) protein suggested that the deposition of large amounts of aggregated disease-related lysozyme variants is initiated by the formation of transient intermediate species. The ability to populate such intermediates is essentially due to the destabilisation of the protein and the loss of the global structural cooperativity under physiologically relevant conditions. Here, we report the characterisation of a third naturally occurring amyloidogenic lysozyme variant, W64R, in comparison with the I56T and WT proteins. The X-ray crystal structure of the W64R variant at 1.15 Å resolution is very similar to that of the WT protein; a few interactions within the ß-domain and at the interface between the α- and ß-domains differ, however, from those in the WT protein. Consequently, the W64R mutation destabilizes the protein to an extent that is similar to that observed for the I56T and D67H mutations. The ΔG°NU(H2O) is reduced by 24 kJ·mol-1 and the Tm is about 12 °C lower than that of the WT protein. Under native conditions, the W64R and I56T proteins are readily digested by proteinase K, while the WT protein remains intact. These results suggest that the two variant proteins transiently populate similar partially unfolded states in which proteinase K cleavage sites are accessible to the protease. Moreover, the in vitro aggregation properties of the W64R protein are similar to those of the I56T variant. Altogether, these results indicate that the properties of the W64R protein are astonishingly similar to those of the I56T variant. They further corroborate the idea that HuL variants associated with the disease are those whose stability and global structural cooperativity are sufficiently reduced to allow the formation of aggregation prone partially folded intermediates under physiological conditions.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Humanos , Modelos Moleculares , Muramidase/química , Muramidase/metabolismo , Mutação , Agregados Proteicos , Conformação Proteica
3.
Sci Rep ; 10(1): 19570, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177555

RESUMO

The Ananas comosus stem extract is a complex mixture containing various cysteine ​​proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 µM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.


Assuntos
Ananas/química , Bromelaínas/química , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bromelaínas/antagonistas & inibidores , Bromelaínas/metabolismo , Bromelaínas/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Cisteína/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Inibidores de Cisteína Proteinase/metabolismo , Dissulfetos/química , Humanos , Leucina/análogos & derivados , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Caules de Planta/química , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tosilina Clorometil Cetona/química , Tosilina Clorometil Cetona/metabolismo
4.
J Biol Chem ; 295(52): 18256-18265, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33109614

RESUMO

Peptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, the machinery responsible for PG synthesis localizes mid-cell, at the septum, under the control of a multiprotein complex called the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. Interestingly, a short sequence of FtsN (Leu75-Gln93, known as EFtsN) was shown to be essential and sufficient for its functioning in vivo, but what exactly this sequence is doing remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its biosynthetic glycosyltransferase (GTase) activity. We also report the crystal structure of PBP1b in complex with EFtsN, which demonstrates that EFtsN binds at the junction between the GTase and UB2H domains of PBP1b. Interestingly, mutations to two residues (R141A/R397A) within the EFtsN-binding pocket reduced the activation of PBP1b by FtsN but not by the lipoprotein LpoB. This mutant was unable to rescue the ΔponB-ponAts strain, which lacks PBP1b and has a thermosensitive PBP1a, at nonpermissive temperature and induced a mild cell-chaining phenotype and cell lysis. Altogether, the results show that EFtsN interacts with PBP1b and that this interaction plays a role in the activation of its GTase activity by FtsN, which may contribute to the overall septal PG synthesis and regulation during cell division.


Assuntos
Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Ligação Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética
5.
Sci Rep ; 8(1): 11508, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065388

RESUMO

A mannose binding jacalin-related lectin from Ananas comosus stem (AcmJRL) was purified and biochemically characterized. This lectin is homogeneous according to native, SDS-PAGE and N-terminal sequencing and the theoretical molecular mass was confirmed by ESI-Q-TOF-MS. AcmJRL was found homodimeric in solution by size-exclusion chromatography. Rat erythrocytes are agglutinated by AcmJRL while no agglutination activity is detected against rabbit and sheep erythrocytes. Hemagglutination activity was found more strongly inhibited by mannooligomannosides than by D-mannose. The carbohydrate-binding specificity of AcmJRL was determined in some detail by isothermal titration calorimetry. All sugars tested were found to bind with low affinity to AcmJRL, with Ka values in the mM range. In agreement with hemagglutination assays, the affinity increased from D-mannose to di-, tri- and penta-mannooligosaccharides. Moreover, the X-ray crystal structure of AcmJRL was obtained in an apo form as well as in complex with D-mannose and methyl-α-D-mannopyranoside, revealing two carbohydrate-binding sites per monomer similar to the banana lectin BanLec. The absence of a wall separating the two binding sites, the conformation of ß7ß8 loop and the hemagglutinating activity are reminiscent of the BanLec His84Thr mutant, which presents a strong anti-HIV activity in absence of mitogenic activity.


Assuntos
Ananas/metabolismo , Lectina de Ligação a Manose/isolamento & purificação , Lectina de Ligação a Manose/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Carboidratos/química , Agregação Eritrocítica , Hemaglutinação/fisiologia , Testes de Hemaglutinação , Lectinas/isolamento & purificação , Lectinas/metabolismo , Manose/química , Peso Molecular , Lectinas de Plantas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Açúcares/química
6.
PLoS One ; 12(7): e0182043, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750094

RESUMO

We analyzed the kinetic properties of the metagenomic class B3 ß-lactamase LRA-12, and determined its crystallographic structure in order to compare it with prevalent metallo-ß-lactamases (MBLs) associated with clinical pathogens. We showed that LRA-12 confers extended-spectrum resistance on E. coli when expressed from recombinant clones, and the MIC values for carbapenems were similar to those observed in enterobacteria expressing plasmid-borne MBLs such as VIM, IMP or NDM. This was in agreement with the strong carbapenemase activity displayed by LRA-12, similar to GOB ß-lactamases. Among the chelating agents evaluated, dipicolinic acid inhibited the enzyme more strongly than EDTA, which required pre-incubation with the enzyme to achieve measurable inhibition. Structurally, LRA-12 contains the conserved main structural features of di-zinc class B ß-lactamases, and presents unique structural signatures that differentiate this enzyme from others within the family: (i) two loops (α3-ß7 and ß11-α5) that could influence antibiotic entrance and remodeling of the active site cavity; (ii) a voluminous catalytic cavity probably responsible for the high hydrolytic efficiency of the enzyme; (iii) the absence of disulfide bridges; (iv) a unique Gln116 at metal-binding site 1; (v) a methionine residue at position 221that replaces Cys/Ser found in other B3 ß-lactamases in a predominantly hydrophobic environment, likely playing a role in protein stability. The structure of LRA-12 indicates that MBLs exist in wild microbial populations in extreme environments, or environments with low anthropic impact, and under the appropriate antibiotic selective pressure could be captured and disseminated to pathogens.


Assuntos
Metagenoma , Solo , Zinco/metabolismo , beta-Lactamases/química , Alaska , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Quelantes/farmacologia , Cristalografia por Raios X , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácido Edético/farmacologia , Escherichia coli/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fenótipo , Análise de Sequência de Proteína , beta-Lactamases/metabolismo
7.
Biochemistry ; 54(32): 5072-82, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26228623

RESUMO

Diversification of the CTX-M ß-lactamases led to the emergence of variants responsible for decreased susceptibility to ceftazidime, like the Asp240Gly-harboring "ceftazidimases". We solved the crystallographic structure of the Asp240Gly variant CTX-M-96 at 1.2 Å and evaluated the role of Asp240 in the activity toward oxyimino-cephalosporins through simulated models and kinetics. There seem to be subtle changes in the conformation of the active site cavity of CTX-M-96, compared to enzyme variants harboring the Asp240, and these small rearrangements could be due to localized shifts in the environment of the ß3 strand. According to the crystallographic evidence, CTX-M-96 presents a "compact" active site, which in spite of its reduced cavity seems to allow the proper interaction with oxyimino-cephalosporins, as suggested by simulated models. The term "ceftazidimases" that is currently applied for the Asp240Gly-harboring CTX-M variants should be used carefully. Structural differences between CTX-M harboring the Asp240Gly mutation (and also probably others like those at Pro167) do not seem to be conclusive to determine the "ceftazidimase" behavior observed in vivo, which is in turn partially supported by the mild improvement in the catalytic efficiency toward ceftazidime by CTX-M-96 and similar enzymes, compared to "parental" Asp240-harboring variants. In addition, it is observed that alterations in OmpF expression could act synergistically with CTX-M-96 for yielding clinical resistance toward ceftazidime. We therefore propose that the observed resistance in vivo is due to the sum of synergic mechanisms, and the term "cefotaximases associated with ceftazidime resistance" could be conveniently used to describe CTX-M harboring the Asp240Gly substitution.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ceftazidima/metabolismo , Klebsiella pneumoniae/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Ceftazidima/farmacologia , Resistência às Cefalosporinas/genética , Cristalografia por Raios X , Genes Bacterianos , Variação Genética , Cinética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Lactamases/genética
8.
Antimicrob Agents Chemother ; 58(10): 5994-6002, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070104

RESUMO

PER-2 belongs to a small (7 members to date) group of extended-spectrum ß-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most ß-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 Å and evaluated the possible role of several residues in the structure and activity toward ß-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singular trans bond between residues 166 to 167, which generates an inverted Ω loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A ß-lactamases. PER ß-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A ("A" indicates an insertion according to Ambler's scheme for residue numbering in PER ß-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different ß-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior.


Assuntos
Cristalografia por Raios X/métodos , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Sequência de Aminoácidos , Cefalosporinas/química , Cefalosporinas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
9.
PLoS One ; 9(5): e98042, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24875494

RESUMO

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP3(57-577)) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module of unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP3(88-165)), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a ß-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP3(57-577) dimerization.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli , Proteínas de Ligação às Penicilinas/química , Peptidoglicano Glicosiltransferase/química , Domínio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/isolamento & purificação , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano Glicosiltransferase/isolamento & purificação , Peptidoglicano Glicosiltransferase/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
10.
Mol Microbiol ; 90(2): 267-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23927005

RESUMO

Binary fission is the ultimate step of the prokaryotic cell cycle. In Gram-negative bacteria like Escherichia coli, this step implies the invagination of three biological layers (cytoplasmic membrane, peptidoglycan and outer membrane), biosynthesis of the new poles and eventually, daughter cells separation. The latter requires the coordinated action of the N-acetylmuramyl-L-alanine amidases AmiA/B/C and their LytM activators EnvC and NlpD to cleave the septal peptidoglycan. We present here the 2.5 Å crystal structure of AmiC which includes the first report of an AMIN domain structure, a ß-sandwich of two symmetrical four-stranded ß-sheets exposing highly conserved motifs on the two outer faces. We show that this N-terminal domain, involved in the localization of AmiC at the division site, is a new peptidoglycan-binding domain. The C-terminal catalytic domain shows an auto-inhibitory alpha helix obstructing the active site. AmiC lacking this helix exhibits by itself an activity comparable to that of the wild type AmiC activated by NlpD. We also demonstrate the interaction between AmiC and NlpD by microscale thermophoresis and confirm the importance of the active site blocking alpha helix in the regulation of the amidase activity.


Assuntos
Divisão Celular , Escherichia coli/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
Biochim Biophys Acta ; 1830(10): 4513-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707715

RESUMO

BACKGROUND: Thiamine triphosphate (ThTP) is present in most organisms and might be involved in intracellular signaling. In mammalian cells, the cytosolic ThTP level is controlled by a specific thiamine triphosphatase (ThTPase), belonging to the CYTH superfamily of proteins. CYTH proteins are present in all superkingdoms of life and act on various triphosphorylated substrates. METHODS: Using crystallography, mass spectrometry and mutational analysis, we identified the key structural determinants of the high specificity and catalytic efficiency of mammalian ThTPase. RESULTS: Triphosphate binding requires three conserved arginines while the catalytic mechanism relies on an unusual lysine-tyrosine dyad. By docking of the ThTP molecule in the active site, we found that Trp-53 should interact with the thiazole part of the substrate molecule, thus playing a key role in substrate recognition and specificity. Sea anemone and zebrafish CYTH proteins, which retain the corresponding Trp residue, are also specific ThTPases. Surprisingly, the whole chromosome region containing the ThTPase gene is lost in birds. CONCLUSIONS: The specificity for ThTP is linked to a stacking interaction between the thiazole heterocycle of thiamine and a tryptophan residue. The latter likely plays a key role in the secondary acquisition of ThTPase activity in early metazoan CYTH enzymes, in the lineage leading from cnidarians to mammals. GENERAL SIGNIFICANCE: We show that ThTPase activity is not restricted to mammals as previously thought but is an acquisition of early metazoans. This, and the identification of critically important residues, allows us to draw an evolutionary perspective of the CYTH family of proteins.


Assuntos
Tiamina Trifosfatase/metabolismo , Sequência de Aminoácidos , Animais , Biocatálise , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tiamina Trifosfatase/química
12.
Biochemistry ; 52(12): 2128-38, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23484909

RESUMO

Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to ß-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Antibacterianos/química , Antibacterianos/farmacologia , Butanonas/química , Butanonas/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , beta-Lactamas/farmacologia
13.
J Antimicrob Chemother ; 67(10): 2379-87, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22773738

RESUMO

OBJECTIVES: Our aim was to unravel the inactivation pathway of the class A ß-lactamase produced by Bacillus licheniformis BS3 (BS3) by clavulanate. METHODS: The interaction between clavulanate and BS3 was studied by X-ray crystallography, pre-steady-state kinetics and mass spectrometry. RESULTS: The analysis of the X-ray structure of the complex yielded by the reaction between clavulanate and BS3 indicates that the transient inactivated form, namely the cis-trans enamine complex, is hydrolysed to an ethane-imine ester covalently linked to the active site serine and a pentan-3-one-5-ol acid. It is the first time that this mechanism has been observed in an inactivated ß-lactamase. Furthermore, the ionic interactions made by the carboxylic group of pentan-3-one-5-ol may provide an understanding of the decarboxylation process of the trans-enamine observed in the non-productive complex observed for the interaction between clavulanate and SHV-1 and Mycobacterium tuberculosis ß-lactamase (Mtu). CONCLUSIONS: This work provides a comprehensive clavulanate hydrolysis pathway accounting for the observed acyl-enzyme structures of class A ß-lactamase/clavulanate adducts.


Assuntos
Bacillus/enzimologia , Ácido Clavulânico/química , Ácido Clavulânico/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores de beta-Lactamases , beta-Lactamases/química , Cristalografia por Raios X , Hidrólise , Cinética , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Conformação Proteica
14.
J Am Chem Soc ; 133(28): 10839-48, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21574608

RESUMO

Boronic acids bearing appropriate side chains are good inhibitors of serine amidohydrolases. The boron usually adopts a tetrahedral conformation, bound to the nucleophilic serine of the active site and mimicking the transition state of the enzymatic reaction. We have solved the structures of complexes of a penicillin-binding protein, the DD-peptidase from Actinomadura sp. R39, with four amidomethylboronic acids (2,6-dimethoxybenzamidomethylboronic acid, phenylacetamidomethylboronic acid, 2-chlorobenzamidomethylboronic acid, and 2-nitrobenzamidomethylboronic acid) and the pinacol ester derived from phenylacetamidomethylboronic acid. We found that, in each case, the boron forms a tricovalent adduct with Oγ of Ser49, Ser298, and the terminal amine group of Lys410, three key residues involved in the catalytic mechanism of penicillin-binding proteins. This represents the first tricovalent enzyme-inhibitor adducts observed by crystallography. In two of the five R39-boronate structures, the boronic acid is found as a tricovalent adduct in two monomers of the asymmetric unit and as a monocovalent adduct with the active serine in the two remaining monomers of the asymmetric unit. Formation of the tricovalent complex from a classical monocovalent complex may involve rotation around the Ser49 Cα-Cß bond to place the boron in a position to interact with Ser298 and Lys410, and a twisting of the side-chain amide such that its carbonyl oxygen is able to hydrogen bond to the oxyanion hole NH of Thr413. Biphasic kinetics were observed in three of the five cases, and details of the reaction between R39 and 2,6-dimethoxybenzamidomethylboronic acid were studied. Observation of biphasic kinetics was not, however, thought to be correlated to formation of tricovalent complexes, assuming that the latter do form in solution. On the basis of the crystallographic and kinetic results, a reaction scheme for this unexpected inhibition by boronic acids is proposed.


Assuntos
Ácidos Borônicos/metabolismo , Domínio Catalítico , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Cristalografia por Raios X , Cinética , Modelos Moleculares , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Solventes/química
15.
Bioorg Med Chem ; 18(21): 7422-31, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20889346

RESUMO

Various peptidoglycan fragments were synthesized from two anhydro-muramic acid derivatives protected with a Bn or a PMB group at the 4th position, in homogenate phase or on a solid support. In order to facilitate HPLC detection, a chromophoric group was attached to the peptide chain. The periplasmic amidase sAmiD of Escherichia coli was used to cleave the amide bond between the lactyl group of the MurNAc and the α-amino group of L-Ala where the peptide chain was at least a dipeptide (L-Ala-γ-D-Glu) amidated by benzylamine on the γ-carboxyl group of D-Glu. In the presence of a tripeptide chain (L-Ala-γ-D-Glu-L-Lys) or a tetrapeptide chain (L-Ala-γ-D-Glu-m-A(2)pm-D-Ala) higher hydrolysis rates were observed. We have also demonstrated that the presence of TNB on the ε-amino group of L-Lys only has a small influence on the hydrolysis capacity of sAmiD.


Assuntos
Amidoidrolases/química , Proteínas de Escherichia coli/química , Ácidos Murâmicos/química , Oligopeptídeos/química , Amidoidrolases/metabolismo , Benzilaminas/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Hidrólise , Cinética , Ácidos Murâmicos/síntese química , Ácidos Murâmicos/farmacologia , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia
16.
J Med Chem ; 53(15): 5890-4, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20593835

RESUMO

Lactivicin (LTV) is a natural non-beta-lactam antibiotic that inhibits penicillin-binding proteins and serine beta-lactamases. A crystal structure of a BS3-LTV complex reveals that, as for its reaction with PBPs, LTV reacts with the nucleophilic serine and that cycloserine and lactone rings of LTV are opened. This structure, together with reported structures of PBP1b with lactivicins, provides a basis for developing improved lactivicin-based gamma-lactam antibiotics.


Assuntos
Antibacterianos/química , Modelos Moleculares , Peptídeos/química , Serina/metabolismo , beta-Lactamases/química , Bacillus/enzimologia , Cristalografia por Raios X , Estrutura Molecular , Peptídeos Cíclicos , beta-Lactamases/metabolismo
17.
J Mol Biol ; 397(1): 249-59, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20036252

RESUMO

AmiD is the fifth identified N-acetylmuramoyl-L-alanine zinc amidase of Escherichia coli. This periplasmic lipoprotein is anchored in the outer membrane and has a broad specificity. AmiD is capable of cleaving the intact peptidoglycan (PG) as well as soluble fragments containing N-acetylmuramic acid regardless of the presence of an anhydro form or not, unlike the four other amidases, AmiA, AmiB, AmiC, and AmpD, which have some specificity. AmiD function is, however, not clearly established but it could be part of the enzymatic machinery involved in the PG turnover in E. coli. We solved three structures of the E. coli zinc amidase AmiD devoid of its lipidic anchorage: the holoenzyme, the apoenzyme in complex with the substrate anhydro-N-acetylmuramic-acid-L-Ala-gamma-d-Glu-L-Lys, and the holoenzyme in complex with the L-Ala-gamma-D-Glu-L-Lys peptide, the product of the hydrolysis of this substrate by AmiD. The AmiD structure shows a relatively flexible N-terminal extension that allows an easy reach of the PG by the enzyme inserted into the outer membrane. The C-terminal domain provides a potential extended geometrical complementarity to the substrate. AmiD shares a common fold with AmpD, the bacteriophage T7 lysozyme, and the PG recognition proteins, which are receptor proteins involved in the innate immune responses of a wide range of organisms. Analysis of the different structures reveals the similarity between the catalytic mechanism of zinc amidases of the AmiD family and the thermolysin-related zinc peptidases.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Biocatálise , Domínio Catalítico , Modelos Moleculares , Ácidos Murâmicos/química , Peptidoglicano/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
18.
J Am Chem Soc ; 131(42): 15262-9, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19919161

RESUMO

6-Beta-halogenopenicillanates are powerful, irreversible inhibitors of various beta-lactamases and penicillin-binding proteins. Upon acylation of these enzymes, the inhibitors are thought to undergo a structural rearrangement associated with the departure of the iodide and formation of a dihydrothiazine ring, but, to date, no structural evidence has proven this. 6-Beta-iodopenicillanic acid (BIP) is shown here to be an active antibiotic against various bacterial strains and an effective inhibitor of the class A beta-lactamase of Bacillus subtilis BS3 (BS3) and the D,D-peptidase of Actinomadura R39 (R39). Crystals of BS3 and of R39 were soaked with a solution of BIP and their structures solved at 1.65 and 2.2 A, respectively. The beta-lactam and the thiazolidine rings of BIP are indeed found to be fused into a dihydrothiazine ring that can adopt two stable conformations at these active sites. The rearranged BIP is observed in one conformation in the BS3 active site and in two monomers of the asymmetric unit of R39, and is observed in the other conformation in the other two monomers of the asymmetric unit of R39. The BS3 structure reveals a new mode of carboxylate interaction with a class A beta-lactamase active site that should be of interest in future inhibitor design.


Assuntos
Actinomycetales/enzimologia , Antibacterianos/química , Bacillus subtilis/enzimologia , Inibidores Enzimáticos/química , Ácido Penicilânico/análogos & derivados , Proteínas de Ligação às Penicilinas/química , beta-Lactamases/química , Cristalografia por Raios X , Modelos Moleculares , Ácido Penicilânico/química , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Estrutura Terciária de Proteína , Inibidores de beta-Lactamases
19.
Proc Natl Acad Sci U S A ; 105(44): 16876-81, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18971341

RESUMO

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-psi beta-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant beta-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Raízes de Plantas/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Parede Celular/metabolismo , Cristalografia por Raios X , Genes Bacterianos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Zea mays/metabolismo
20.
J Mol Biol ; 371(2): 528-39, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17582436

RESUMO

The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.


Assuntos
Bacillus subtilis/química , Bacillus subtilis/metabolismo , Materiais Biomiméticos/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Peptídeos/metabolismo , Peptidoglicano/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Materiais Biomiméticos/química , Cristalografia por Raios X , Lactamas/química , Lactamas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Ligação às Penicilinas/genética , Peptídeos/química , Peptidoglicano/química , Ligação Proteica , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...